Optimization-based structure identification of dynamical networks
نویسندگان
چکیده
The topological structure of a dynamical network plays a pivotal part in its properties, dynamics and control. Thus, understanding and modeling the structure of a network will lead to a better knowledge of its evolutionary mechanisms and to a better cottoning on its dynamical and functional behaviors. However, in many practical situations, the topological structure of a dynamical network is usually unknown or uncertain. Thus, exploring the underlying topological structure of a dynamical network is of great value. In recent years, there has been a growing interest in structure identification of dynamical networks. As a result, various methods for identifying the network structure have been proposed. However, in most of the previous work, few of them were discussed in the perspective of optimization. In this paper, an optimization algorithm based on the projected conjugate gradient method is proposed to identify a network structure. It is straightforward and applicable to networks with or without observation noise. Furthermore, the proposed algorithm is applicable to dynamical networks with partially observed component variables for each multidimensional node, as well as small-scale networks with time-varying structures. Numerical experiments are conducted to illustrate the good performance and universality of the new algorithm. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملExperimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...
متن کامل